- A titration using potassium manganate(VII) in dilute sulfuric acid can be used to determine the percentage of
 □ A aspirin in aspirin tablets.
 □ B chlorine in bleach.
 □ C copper in an alloy.
 □ D iron(II) sulfate in iron tablets.

 (Total for Question = 1 mark)
- 2 Aqueous sodium hydroxide and aqueous ammonia are added to separate solutions of the same metal ion. The observations are shown in the table below.

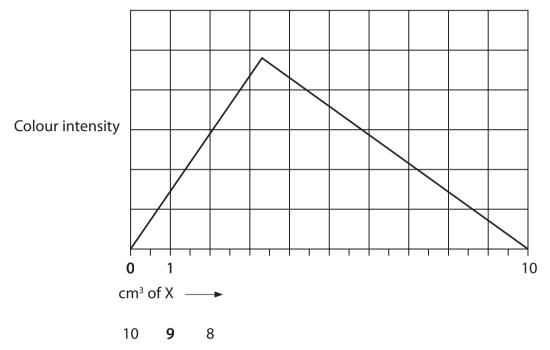
Reagent added	A few drops	Excess
NaOH(aq)	green precipitate	green precipitate remains
NH₃(aq)	green precipitate	green precipitate dissolves to form a blue solution

The metal ion is

- \triangle A $Cr^{3+}(aq)$.
- \square **B** Fe²⁺(aq).
- \square **C** Fe³⁺(aq).
- \square **D** Ni²⁺(aq).

(Total for Question = 1 mark)

3	٦	Γhe	re	eaction between cerium(IV) ions and thallium(I) ions is very slow.
				$2Ce^{4+}(aq) + TI^{+}(aq) \rightarrow 2Ce^{3+}(aq) + TI^{3+}(aq)$
	٧	Vhic	ch	n of these ions could catalyse this reaction?
				Al ³⁺
	×			Fe ³⁺
	×			Na ⁺
	×			Zn^{2+}
				(Total for Question = 1 mark)
4	W	hic	h	of these hydroxides is amphoteric?
	X	A		Cu(OH) ₂
	X	В		Mg(OH) ₂
	X	C		Ni(OH) ₂
	X	D)	Zn(OH) ₂
				(Total for Question = 1 mark)
5 Tł	ne i	rea	cti	
				$[Fe(H_2O)_6]^{2+} + H_2O \rightarrow [Fe(H_2O)_5(OH)]^{+} + H_3O^{+}$
_				ample of
Ŀ	X			oxidation.
Ŀ	×	В		reduction.
	×			igand exchange.
	X	D	а	acid-base behaviour.
				(Total for Question = 1 mark)


5

О	A s	solu forn	tion containing one mole of the compound reacts with two moles of silver nitrate n two moles of silver chloride. mplex chromium ion in the compound is most likely to be
	×	Α	$[Cr(H_2O)_3CI_3]^{3+}$
	X	В	$[Cr(H_2O)_4CI_2]^+$
	×	C	[Cr(H2O)5Cl]2+
	X	D	$[Cr(H_2O)_6]^{3+}$
			(Total for Question = 1 mark)
7	The	e rea	ction below can be catalysed by either Fe ²⁺ ions or Fe ³⁺ ions.
			$S_2O_8^{2-}(aq) + 2I^-(aq) \rightarrow 2SO_4^{2-}(aq) + I_2(aq)$
	Th	nis is	because
	X	Α	both reactants can react with Fe ²⁺ ions.
	X	В	both reactants can react with Fe ³⁺ ions.
	X	C	$S_2O_8^{2-}$ ions can be oxidized by Fe^{3+} ions and I^- ions can be reduced by Fe^{2+} ions.
	X	D	$S_2O_8^{2-}$ ions can be reduced by Fe^{2+} ions and I^- ions can be oxidized by Fe^{3+} ions.
			(Total for Question = 1 mark)
8	nit By	rog con	r metal is oxidized to Cu ²⁺ by nitrate(V) ions which are reduced to en monoxide, NO. sidering the changes to the oxidation numbers of copper and nitrogen, it can duced that in this reaction
	X	A	2 mol of copper reacts with 3 mol of nitrate(V) ions.
	X	В	2 mol of copper reacts with 5 mol of nitrate(V) ions.
	X	C	3 mol of copper reacts with 2 mol of nitrate(V) ions.
	X	D	5 mol of copper reacts with 2 mol of nitrate(V) ions.
			(Total for Question = 1 mark)

9			npound 1,2-diaminoethane, H ₂ NCH ₂ CH ₂ NH ₂ , is a bidentate ligand; in formulae, ally abbreviated to 'en'.
			,2-diaminoethane is added to $[Co(NH_3)_6]^{2+}$ in aqueous solution, $[Co(en)_3]^{2+}$ is . What is the best explanation for this?
	A		re are much stronger bonds between the ligands and the cobalt(II) ion in $(en)_3$ ²⁺ than in $[Co(NH_3)_6]^{2+}$.
	В	Wh	en $[Co(en)_3]^{2+}$ is formed from $[Co(NH_3)_6]^{2+}$ the reaction is exothermic.
	c		en $[Co(en)_3]^{2+}$ is formed from $[Co(NH_3)_6]^{2+}$ the total entropy change is itive.
N	D		en $[Co(en)_3]^{2+}$ is formed from $[Co(NH_3)_6]^{2+}$ the reaction has a low activation rgy.
			(Total for Question 9 = 1 mark)
10	m hy	etal /drox	aqueous sodium hydroxide is added to an aqueous solution of a transition compound, a green precipitate is formed which dissolves in excess sodium kide forming a green solution. The transition metal ion present in the original
		lutic	
	×	A	Cr ³⁺
	×	В	Fe ³⁺
	×	C	Fe ²⁺
	×	D	Ni ²⁺
			(Total for Question = 1 mark)

		the		r dioxide reacts with hydrogen sulfide to form water and sulfur. By considering anges in the oxidation numbers of sulfur, it can be deduced that, in this on
	A 1 mol of sulfur dioxide oxidizes 2 mol of hydrogen sulfide.			
	[X	В	1 mol of sulfur dioxide reduces 2 mol of hydrogen sulfide.
	[X	C	2 mol of sulfur dioxide oxidizes 1 mol of hydrogen sulfide.
		X	D	2 mol of sulfur dioxide reduces 1 mol of hydrogen sulfide.
				(Total for Question = 1 mark)
12	12 When EDTA is added to $[Cu(NH_3)_4]^{2+}$ in aqueous solution, the copper(II)-EDTA complex, $[Cu(EDTA)]^{2-}$, predominates in the resulting solution. This is best explained by the fact that when $[Cu(EDTA)]^{2-}$ is formed from $[Cu(NH_3)_4]^{2+}$			
	_			nere are much stronger bonds between the ligands and the copper(II) ion.
	×	В	tŀ	ne reaction has a low activation energy.
	×	C	tŀ	ne reaction is exothermic.
	D the total number of particles on the right-hand side of the equation is greater than on the left.			
				(Total for Question = 1 mark)

13 The graph below shows the variation in the colour intensity of different solutions formed by mixing a 0.05 mol dm⁻³ solution of a metal ion **X** and a 0.05 mol dm⁻³ solution of a complexing agent **Y**, in the proportions shown on the graph.

← cm³ of Y

The most likely formula of the complex formed is

- \boxtimes A X_2Y
- \boxtimes **B** XY₂
- C XY₃
- \square **D** X_3Y

(Total for Question = 1 mark)

14	14 The hydrolysis of a transition metal cation can be represented by the following equation		
			$[M(H_2O)_6]^{n+}(aq) + H_2O(I) \rightleftharpoons [M(H_2O)_5OH]^{(n-1)+}(aq) + H_3O^+(aq)$
	In t	this	reaction
	X	A	the solvent H ₂ O is acting as an acid by donating a proton to the metal cation.
	X	В	the pH of the solution will be lower if the value of n is 2 instead of 3.
	X	C	the equilibrium position lies further to the right if the value of n is 3 instead of 2.
	X	D	the oxidation state of the metal in the cation has decreased from n to $(n-1)$.
			(Total for Question = 1 mark)
15	Cor	nsid	er the equation below. $[Cu(H2O)6]2+(aq) + 4NH3(aq) \rightleftharpoons [Cu(NH3)4]2+(aq) + 6H2O(l)$
	Thi	s re	action is best described as
			acid-base.
	×	В	redox.
	×	C	addition.
	×	D	ligand exchange.
			(Total for Question = 1 mark)

16 In the manufacture of sulfuric acid, sulfur dioxide is converted to sulfur trioxide using a catalyst of vanadium(V) oxide:

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

The electronic configuration of vanadium is [Ar] 3d³ 4s², so the mechanism for this reaction is most likely to involve a sequence in which vanadium(V) is converted to

- ☑ A vanadium(VI) by oxygen then back to vanadium(V) by sulfur dioxide.
- **B** vanadium(VI) by sulfur dioxide then back to vanadium(V) by oxygen.
- ☑ C vanadium(IV) by oxygen then back to vanadium(V) by sulfur dioxide.
- ☑ **D** vanadium(IV) by sulfur dioxide then back to vanadium(V) by oxygen.

(Total for Question = 1 mark)

17 All metal hydroxides dissolve in acid. When aqueous solutions of sodium hydroxide and ammonia are added separately to samples of chromium(III) hydroxide, in both cases the solid dissolves to form a green solution. How should these reactions be classified?

	sodium hydroxide	ammonia
⋈ A	amphoteric	amphoteric
⋈ B	amphoteric	ligand exchange
⊠ C	ligand exchange	amphoteric
⊠ D	ligand exchange	ligand exchange

(Total for Question = 1 mark)

- 18 This question is about a titration to determine the iron content of a tablet. The iron(II) ions in the tablet are oxidized to iron(III) ions by acidified manganate(VII) ions which are reduced to manganese(II) ions.
 - (a) The mole ratio of iron(II) to manganate(VII) ions in the reaction is

(1)

	Fe ²⁺	MnO ₄
⊠ A	1	5
⊠ B	2	5
⊠ C	5	2
⊠ D	5	1

(b) A 0.200 g tablet is dissolved to make exactly 100 cm 3 of solution. 10 cm 3 of this solution is found to contain 5.38×10^{-5} mol of iron(II) ions.

The percentage by mass of iron $(A_r ext{ 55.8})$ in the tablet is

(1)

$$\triangle$$
 A $\frac{5.38 \times 10^{-5} \times 55.8}{0.200} \times \frac{100}{10} \times 100\%$

$$\square$$
 C $\frac{5.38 \times 10^{-5} \times 55.8}{0.200} \times \frac{10}{100} \times 100\%$

(Total for Question 2 marks)

19		first commonly used breathalyser, acidified potassium dichromate(VI) was used was reduced to chromium(III) by alcohol.
	The co	lour change seen when alcohol was present in a motorist's breath is from
	\mathbf{X} A	orange to green.
	\blacksquare B	orange to yellow.
		yellow to green.
	\boxtimes D	yellow to orange.
		(Total for Question 1 mark)

Fo	ur re	actions involving the transition elements copper and chromium are given below.	
1	Cu ²	$^{+}(aq) + 2OH^{-}(aq) \rightarrow Cu(OH)_{2}(s)$	
2	[Cu	$(H_2O)_4(OH)_2](s) + 4NH_3(aq) \rightarrow [Cu(H_2O)_2(NH_3)_4]^{2+}(aq) + 2OH^-(aq) + 2H_2O(1)$	
3	[Cr	$(H_2O)_3(OH)_3](s) + 3OH^-(aq) \rightarrow [Cr(OH)_6]^{3-}(aq) + 3H_2O(1)$	
4	[Cr	$(H_2O)_3(OH)_3](s) + 3H^+(aq) \rightarrow [Cr(H_2O)_6]^{3+}(aq)$	
(a)	Wh	ich reaction produces a dark blue solution?	(1)
X	A		
X	В	2	
X	C	3	
X	D	4	
(b)	Wh	ich two reactions show the amphoteric behaviour of a metal hydroxide?	(1)
X	A	1 and 2	
X	В	2 and 3	
X	C	2 and 4	
X	D	3 and 4	
(c)	Pred	dict, without calculation, which reaction has the most negative value for $\Delta S_{ m system}$.	(1)
X	A		
X	В	2	
X	C	3	
X	D	4	
		(Total for Question 3 mark	s)

20

		a few drops of aqueous ammonia are added to a solution containing $[Cr(H_2O)_6]^{3+}$ e product formed will be
×	A	$[Cr(NH_3)_6]^{3+}$
×	В	Cr(H2O)3(OH)3
×	C	$[Cr(NH_3)_4]^{3+}$
×	D	$[Cr(H_2O)_2(OH)_4]^-$
		(Total for Question 1 mark)
		e reaction of manganate(VII) ions with reducing agents in strongly acidic solution, lf-reaction for the reduction is
	A	$MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$
	B	$MnO_4^- + 4H^+ + 5e^- \rightarrow Mn^{2+} + 2H_2O$
	C	$MnO_4^- + 8H^+ + 3e^- \rightarrow Mn^{2+} + 4H_2O$
	D	$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$
		(Total for Question = 1 mark)
	_	gh platinum is very unreactive, it is used as a catalyst in catalytic converters in rs. Which of the following is true?
X		It converts nitrogen oxides and carbon monoxide to nitrogen and carbon dioxide by adsorbing the reactants on its surface so weakening their bonds.
X		It converts nitrogen oxides and carbon monoxide to nitrogen and carbon dioxide by being able to change its oxidation state.
\times	C I	t oxidizes unburnt fuel to carbon monoxide.
X	D I	t oxidizes unburnt fuel to carbon dioxide.
		(Total for Question = 1 mark)
pro	oduct	dichromate(VI) ions, $Cr_2O_7^{2-}$, react with iron(II) ions in acidic solution, the as are chromium(III) ions and iron(III) ions. In what ratio do the dichromate(VI) d the iron(II) ions react?
\times	A	1:6
\times	В	1:5
\times	C	2:5
\times	D	1:3

When concentrated ammonia solution is added to a green solution of chromium(III) sulfate, a green precipitate is formed which slowly dissolves in excess of the concentrated ammonia solution.

The chromium-containing species formed in these reactions are

	Green precipitate	Resulting solution
⊠ A	Cr(OH) ₃	[Cr(OH) ₆] ³⁻
⊠ В	Cr(OH) ₃	[Cr(NH ₃) ₆] ³⁺
⊠ C	(NH ₄) ₂ CrO ₄	[Cr(OH) ₆]³-
⊠ D	(NH ₄) ₂ CrO ₄	[Cr(NH ₃) ₆] ³⁺

(Total for Question = 1 mark)

26		h of the following reagents would enable you to separate iron(III) hydroxide from a e of iron(III) hydroxide and copper(II) hydroxide?	
	A A	Dilute hydrochloric acid	
	⊠ B	Aqueous ammonia	
		Dilute nitric acid	
	⊠ D	Sodium hydroxide solution	
		(Total for Question 1 mark)	
	with ex	When a solution containing 0.10 mol of chromium(III) chloride, CrCl ₃ .6H ₂ O, is treated excess silver nitrate solution, 0.20 mol of silver chloride, AgCl, is immediately sipitated. The formula of the complex ion in the solution is	

 \triangle **A** $[Cr(OH)_6]^3$

 \square **B** $[Cr(H_2O)_6]^{3+}$

 \square **C** $[CrCl(H_2O)_5]^{2+}$

 \square **D** $[CrCl_2(H_2O)_4]^+$